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Abstract— Computer-aided diagnosis (CADx) of mammographic microcalcifications (MCs) is designed to reduce 
the number of false biopsies by increasing the positive predictive value of the radiologist’s interpretation. Although 
several algorithms were developed in the last two decades, the performance of these systems remains 
unsatisfactory and the need for developing efficient automated feature extraction and selection techniques is still 
high. In our attempt to address this demand, we propose a morphology-based CADx system for which we extract a 
set of 44 morphological features that describe the shape and the distributions of microcalcifications. In this paper, 
we present a heuristic model selection algorithm using a PSO-SVM framework that combines feature selection and 
SVM performance optimization steps. We also compare the performance of the feature selection using a binary 
PSO method against the outweighed nested-subsets method. To validate the proposed feature extraction and model 
selection methods, two datasets of microcalcification (MC) clusters have been used: the mini-MIAS and a digital 
mammography dataset from Bronson Methodist Hospital in Kalamazoo, Michigan. The obtained results 
demonstrate the effectiveness of the proposed CADx and indicate that a PSO-SVM framework using a binary PSO 
feature search method is more powerful than using an outweighed nested-subsets method. 
 
Keywords— Feature selection, Mammogram, Microcalcifications, Morphology, Particle swarm optimization, 
Support vector machines. 
 

I. INTRODUCTION 

According to World Health Organization (WHO), breast cancer causes more than 500,000 
women deaths each year.  In Jordan, breast cancer, accounting for 36.7% of all female 
cancers, is not only ranked first among cancers afflicting women but also it is a leading cause 
of cancer’s death. Mammography, an X-ray based medical imaging modality, is the most 
effective imaging tool for breast cancer screening [1]. A key sign of an early stage of breast 
cancer is the presence of granular clustered MCs, which are tiny deposits of calcium. 
Compared to other breast abnormalities, MCs appear more frequently on mammograms and 
represent an early sign to 30-50% of breast cancers diagnosed using mammography. 
However, discrimination between malignant and benign clustered microcalcifications is a 
challenging and error-prone task. This leads to a relatively low positive predictive 
value (PPV) of mammography interpretations [2], [3]. According to the literature, 10-30% of 
breast tumors are misclassified during routine mammography screening; and only 15-30 % of 
the cases recommended for invasive breast biopsies are found positive.  
Mammography CADx systems are intended to help radiologists differentiate between 
malignant and benign breast abnormalities. That is to characterize the malignancy of clustered 
microcalcifications, which are tiny deposits of calcium and significant and common signs of 
the disease. Although numerous CADx approaches have been developed in the recent years, 
the development of CADx scheme with a satisfactory high PPV remains an open research 
question. In general, CADx approaches perform an automated diagnosis of mammographic 
MCs through four steps: mammographic region selection, feature extraction, feature selection, 
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and pattern classification. The malignancy of MCs is commonly characterized by using their 
morphology [2], [4], [6]-[12] or analyzing the texture of mammographic regions [8]-[10], 
[13], [14].  
Feature extraction techniques may produce redundant or inadequate features, which result in a 
complex feature space and poor discrimination among different patterns. Hence, a feature 
selection process is a necessary stage to select a small subset of features that are more 
discriminating. Previous studies have selected the best feature subset and reduced the  
dimensionality of the original feature space using exhaustive heuristic search methods such as 
Genetic algorithms (GAs) [8]-[10],[13], linear discriminate analysis [8], sequential forward 
and backward selection methods [4], [12], and components analysis [15]. Other studies also 
presented a semi-automated feature selection method that eliminates weak features using 
univariate ranking and a rule-based expert system to search for additional discriminative 
features [11]. 
Microcalcification clusters CADx systems have been commonly modeled and solved as a 
binary classification problem accomplished using the supervised learning approach.  The most 
popular classifiers used in previous CADx schemes are artificial neural network (ANN) [2], 
[4], [7], [11], [13], k-nearest neighbor (kNN) [9], [10], [13], [14], and the state of the art 
kernel based SVM [2], [11], [15], [16]. The other learning machines which were used in 
previous studies include statistical Bayesian [13], linear discriminate analysis (LDA) [6], [8], 
kernel fisher discriminate (KFD), relevance vector machine (RVM), and ensemble methods 
[2]. 
CADx systems that combine shape-based feature extraction and kernel-based SVM learning 
have proven to be more effective than the popular ANN. Several studies have demonstrated 
this result by applying both SVM and ANN learning machine to classify MCs within the same 
experiments (i.e. similar extracted features and mammograms) [2], [11]. However, the 
previous SVM based MCs diagnosis methods have several shortcomings and limitations, 
which include employing semi-automated techniques to perform segmentation of the 
individual MCs and feature selection [2] and [11]. The performance of SVM classifier was 
optimized using the conventional grid search selection [11], k-fold cross-validation [16], and 
exhaustive and computationally expansive heuristic search method using GA [15]. In 
addition, shape features extracted in [2], [11] were limited to the geometrical (e.g. region and 
distribution) descriptors and have not included other mathematical boundary descriptors such 
as normalized shape moment and Fourier descriptor. Yet, mathematical descriptors have 
demonstrated to be very effective in discriminating benign and malignant MCs [6]. 
This paper presents a four-stage CADx scheme. In the first stage of our shape-based CADx 
scheme, we segment the individual MCs using a morphological filtering scheme with dual 
filtering scales. In the second stage, 44 shape descriptors including measures of the region 
(e.g. area, compactness, eccentricity, and extent), distribution, and shape boundary are used to 
characterize each MC cluster. A heuristic model selection, or more specifically an embedded 
feature selection, using a PSO heuristic search method is mainly intended to integrate both 
processes of feature selection and the SVM classifier’s model selection. Moreover, in this 
paper, we compare two methods to achieve the feature search process. The first method is 
based on a heuristic search using binary PSO technique to find an optimal feature subset, 
whereas the second method constructs a search space and feature subsets using an outweighed 
univariate-based nested subsets method.  It is worth noting that the previous applications of 
PSO-SVM algorithm, presented in [1], [17] and [18], are different from this work. In [1], the 
PSO-SVM approach was used for accomplishing model selection (parameter and hyper-
parameter selection) and reducing false positive results in computer-aided detection. In [17], 
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textural descriptors were used to characterize the malignancy of microcalcifications. The 
PSO-SVM approach in [18] used the least-squares SVM classifier, a fast and simple 
algorithm for solving the classification problem, instead of the conventional SVM classifier. 
The remainder of this paper is organized as follows: a theoretical background of the methods 
used in this study is presented in section 2; the proposed shape-based CADx is introduced in 
section 3; experimental results, discussion and conclusions are presented in sections 4 and 5, 
respectively. 

II. BACKGROUND 

A. Heuristic Parameter Search using PSO 

Particle swarm optimization (PSO) [19], introduced by Eberhart and Kennedy in 1995, is a 
population based heuristic search approach inspired by the social behavior of the flocks of 
birds and the schools of fish, where a group of individuals (particles) located in the parameter 
space of an objective function search for the optimal solution. PSO search strategy uses the 

location of both best personal fitness 
pBest

kx  achieved by kth particle and global fitness gBestx  

to compute ith dimension velocity and the new position of kth particle as follows: 
 

dixtxrcxtxrctvwtv gBest
iki

pBest
kikikiki ,2,1),)(.(.))(.(.)(.)1( 2211                     (1) 

where d is the dimensionality of the kth particle; w is a constant, typically in the interval [0, 1], 
representing the inertia of the movement; r1 and r2 are random numbers between [0, 1]; and c1 
and c2 are non-negative constants representing learning rates. To control the search speed, the 

ith velocity )(tvki  is constrained by the user to be in the range ],[ maxmin vv . During the search 
process, the location of each particle is updated using the velocity computed in (1) as: 
 

)1()()1(  tvtxtx kikiki
, di ,2,1                                                                             (2) 

B. Feature Selection Methods  

Candidate features or feature subsets produced by various feature search techniques are 
commonly evaluated using feature filters, wrappers [3], [20] and embedded methods [21]. In 
this work, we opted to use an embedded feature selection technique that uses a heuristic 
feature search based on the particle swarm optimization (PSO) algorithm. PSO based heuristic 
search method is used instead of a genetic based algorithm since the former is proven to be a 
more computationally efficient and a very competitive alternative for GAs based methods 
[22], [23] and [24]. 
1) Feature selection using binary PSO: PSO based feature selection method [23], [25] is 
similar in principle to GA based method proposed by Seidlecki and Skalanski [27]. Each 
particle in the swarm represents a candidate feature subset coded as N-dimensional binary 
string with each component randomly assigned a value 0 or 1 [26]. Coordinates of each 
particle are assumed to be real valued random variables uniformly distributed between zero 
and one. Hence, this study converted the real representation of each particle into a binary 
string by assigning a binary 1 to all components larger than a statistical mean of all 
coordinates that is also a real number between 0 and 1. A binary 0 is also assigned to all 
coordinates less than this statistical mean. This binary conversion of the coordinates is 
different from the original binary PSO [25], [26], which compared a logistic transformation of 



© 2016 Jordan Journal of Electrical Engineering. All rights reserved ‐ Volume 2, Number 2                              129 

the new coordinate velocity )1( tvki  with a random number between 0 and 1 to determine 

the new location )1( txki  of the corresponding coordinate. 

2) Outweighed univariate-based nested subsets method: This method does not rely entirely on 
PSO method to create candidate feature subsets, but it adopts the nested subset method to 
generate N candidate feature subsets from the N features ranked individually using ROC 
analysis method. We follow this by an embedded feature selection procedure using PSO-
SVM algorithm. A general shortcoming of forming different feature subsets using a single 
variable evaluation is the fact that truly redundant or highly correlated features may exist 
within subsets. Therefore, this study uses an average cross-correlation between a candidate 
feature and features already included as an additional criterion to control the redundancy level 
among selected features [28]. Such a process uses a real-valued u weight constant that can be 
set between 0 (discard the redundancy) and 1 (highest penalty) to penalize the ranking score 
of a potential feature if this feature shows a high correlation with others already in the subset.  
 

C. Support Vector Machine (SVM) 

The basic principle of pattern recognition using SVM is based on finding an optimal hyper-
plane in the input feature space that maximizes separation (geometric margin) among the 

patterns from different classes [28]. Given input patterns nx  that are two classes with a 

class label }1,1{y , the SVM learning problem is formulated as a convex optimization 
problem that is subject to a set of inequality and linear constraints [29], [30] written as 
follows: 
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subject to: 
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where i  is a positive slack variable as introduced by Cortes and Vapnik [31]; C is a positive 

regularization or penalization parameter, which corresponds to a training error that must be 
adjusted during a model selection process; and L is the number of training samples. 
Data, in general, is either nonlinearly separable or linearly separable in the original feature 
spaces. However, it can be linearly separated in a higher dimensional feature space. This 
higher dimensional feature space is usually obtained using a nonlinear mapping called kernel 
function )(x [30], known as "kernel trick", which maps the original feature space into a 

higher dimensional feature space. The most common kernel functions are the Gaussian or 

RBF kernel ]2/)(exp[),( 22 yxyx K  and the polynomial kernel, PTK )1(),( yxyx   [30]. 

The real and integer control parameters   and P need to be adjusted during SVM learning to 
optimize their generalization abilities. 
Solving SVM dual optimization results in the decision function described by a set of 
Lagrange multipliers α୧  and a bias constant b, which can be used to compute the class label 

py~  of an input test pattern x୮ as follows:  
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III. MORPHOLOGY BASED CADX OF MICROCALCIFICATIONS 

Computer-aided diagnosis of MCs, if approved for the clinical use, can have a significant 
impact on the performance of the entire diagnosis process. This requires a careful design of 
the CADx scheme that produces almost a perfect diagnosis performance. Hence, one should 
not underestimate the impact of various components of the CADx scheme including shape 
feature extraction, feature selection and classification. The shape based diagnosis scheme as 
proposed in this study and illustrated in Fig. 1 segments MCs via a multiscale morphological 
filtering scheme. It also employs the radiologist’s input (location and size of MC cluster) to 
automate region selection and improve the segmentation of MCs. We also employ several 
groups of shape descriptors to characterize the region, distribution, and boundary of 
individual MCs and their entire cluster. Our scheme also employs a PSO heuristic search 
technique to accomplish a model selection of the SVM classifier to optimize classification 
performance and generalization ability. This study also compares the performance of feature 
selection using univariate-based nested subset methods and heuristic search using a binary 
PSO method. 
 

A. Morphological Based Segmentation  

Mathematical morphology is recognized to be a very effective tool in digital image 
processing; and is employed by many researchers for pre-filtering, enhancement, 
segmentation, and shape feature extraction [3], [33]. 

 

iy~ iteration -ith 

)C,,(K Fun 

 
Fig. 1. Diagnosis of MCs using the shape based CADx. The user input represents the ground truth of each 

microcalcification cluster 
 

Morphological image processing is based mainly on dilation and erosion operations [33]. 
Several studies have reported on the effectiveness of mathematical morphology for MC 
segmentation and detection [32], [34] and [35]. In these approaches, segmentation of MCs 
was accomplished by combining top-hat transform with tools such as Sobel and Canny edge 
detectors [32], difference of Gaussian filter [34] and watershed transform [35]. Mathematical 
morphology is effective because it can detect and segment bright objects and preserve their 
shape even when the gray-level of the surrounding region is inhomogeneous. This is precisely 
what makes morphological algorithms, such as watershed and top-hat transforms, excellent 
candidate algorithms for segmenting MCs and implementing shape based CADx.  

 .is  the kernel ሺ RBF or Polynomial) function ܖܝ۹۴ 
  .denotes the leave-one-out cross-validation procedure ۽۽ۺ 
ࢽ   ൌ ሺ2ߪଶሻ ିଵ is the RBF kernel width.   
 C is the regularization parameter of the SVM classifier. 
ܠ is the predicted class label of the test sample  ࢏ ෥࢟  ௜. 
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1) Segmentation of MCs using morphological filtering: since it is difficult and impractical to 
conduct a subjective evaluation of the segmentation outcome, we used the overall 
performance of the classification scheme and the discriminative power of the extracted shape-
descriptors to design and evaluate the proposed segmentation scheme [4]. After several 
experiments and performance evaluations of the extracted shape descriptors, we have 
proposed a new segmentation method illustrated by Fig. 2. This proposed scheme 
accomplishes MCs segmentation as logical combinations of the binary output of dual 
modified top-hat transform. A threshold computed using low order statistics (first and second 
moments) of the filtered region is applied to the output of each morphological filter bank to 
produce a binary image representing the segmented MCs.  
As demonstrated in Fig. 2, the basic difference between the conventional top-hat transform 
and the proposed one is that the later applies additional morphological closing operations that 
smoothe the background image prior to its subtraction from the original image. 

 

 
a)                                                                                           b) 

Fig. 2. The MC segmentation stage [28] a) illustration of a single scale modified top-hat morphological filtering 
stage, which smoothes an opened image via a closing operation using the same structure element, b) segmentation 

of MCs using a dual top-hat filtering scheme. The final segmentation result is obtained by applying logical sum 
(OR) operation to the results of each signal scale 

 
Although one can employ more than two scales, our experimental results indicate that the two 
structure elements of size 5×5 and 7×7 can be effectively employed. An important step for an 
efficient supervised learning is the purity of the training examples which represent each class 
and require an efficient MC segmentation and post-processing step to reduce the number of 
false detected signals. In this study, we used a ground truth file accompanied with each 
mammogram that included the location and size of the region that best fits MC cluster to 
generate a binary mask and eliminate all detected signals located outside the rectangular 
region enclosed. A sample of the results of this process is shown in Fig. 3. 
2) Segmentation of MC clusters: previous studies have demonstrated that analyzing the shape 
of the entire MC cluster can also be beneficial for distinguishing a malignant from benign 
cluster, [2] and [7]. In this work, a binary region representing an entire MC cluster is 
produced using successive applications of six morphological dilation operations to merge 
binary regions of the individual MCs into one region, which is adapted from [7]. Utilizing a 
prior knowledge such as the size of the ROI encloses each MC cluster and allows for an 

Top-Hat Filtering 
Scale 1

Top-Hat Filtering 
Scale 2

OR

Segmneted MCs
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accurate automated delineation of the cluster area. False detected MCs, located outside the 
actual cluster, might change the regularity of the shape of the cluster area and so alter the 
computation of related shape descriptors. 

 

 
Fig. 3. Segmentation of microcalcification clusters. Original mammogram regions are shown in a, d and g. The 
segmentation results, before applying the binary mask, are in b, e and h. The improved segmentation, utilizing a 

binary mask corresponds to the microcalcification cluster best fitting region are shown in c, f and i 
 

B. Shape Based Feature Extraction  

Several shape features have been used for analyzing the malignancy of MC clusters. A 
summary of various shape descriptors and their importance can be found in [4]. This work 
introduces the criteria that have affected the development of the feature extraction stage and 
the selection of the shape features. Feature extraction is planned to model the radiologists’ 
approach by using the morphology and distribution of MCs as the primary domain for the 
characterization and diagnosis of clustered microcalcifications [5], including various shape 
descriptors from the literature [4]-[12]. This study also avoided eliminating some descriptors 
based on their single variable evaluation that may help some shape descriptors to perform 
better when combined with others. 
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TABLE 1 
EXTRACTED SHAPE FEATURES  

No. Feature Name No. Feature Name 
1 Number of MCs in a cluster 23 SD- Compactness **
2 Number of single- pixel MCs 24 Mean- Perimeter of MCs** 
3 Sum- Area 25 SD- Perimeter of MCs**
4 Mean- Area 26 Mean- Distances from a cluster’s centroid 
5 SD- Area 27 SD- Distances from a cluster’s centroid 
6 Mean- Equivalent diameter 28 Mean- F2'
7 SD- Equivalent diameter 29 SD- F2'
8 Mean- Solidity 30 Mean- F4'
9 SD- Solidity 31 SD- F4'

10 Mean- Eccentricity 32 Max- F4'
11 SD- Eccentricity 33 Mean- FF
12 Mean- Extent 34 SD- FF
13 SD- Extent 35 Area (MC)
14 Mean- Minor Axis length 36 Convex Area (MC)
15 SD- Minor Axis length 37 Eccentricity (MC) 
16 Mean- Major Axis length 38 Circularity (MC)
17 SD- Major Axis length 39 Major Axis (MC)
18 Mean- Convex Area 40 Minor Axis (MC)
19 SD- Convex Area 41 Axis ratio (MC)
20 Mean- Orientation* 42 F2' (MC)
21 SD- Orientation* 43 F3'- F1' (MC)
22 Mean- Compactness ** 44 FF- (MC)

* Single pixel MCs is excluded, ** Prior region up-scale is applied 

Shape features, obtained from regions representing individual MCs as well as an entire 
cluster, are used to describe each MC cluster that is examined in this study. Extracted shape 
features are listed in Table 1 are mainly grouped into three subsets: region descriptors subset 
[33], [6], [10], [11], such as area extent [11], [15], compactness or circularity [6], [7], [9], [11] 
eccentricity [4], [11], solidity [11], [15], and equivalent diameter [11], [15]. The second 

subset contains the boundary descriptors that include normalized shape moments ,, '
2

'
1 FF '

3F , 

and '
1

'
3 FF  or '

4F  [4], [6], [10], [15], and normalized Fourier descriptors ( FF ) [4], [6], [10]. 

The third subset includes features describing the distribution of MCs in a cluster such as 
orientation [11], and spreading of MCs in the cluster [4], [11], [15], which is extracted from 
the binary region of each MCs and the whole cluster. Other features used in this work are 
neither region nor boundary descriptors such as the number of MCs [7], [10], [11] as well as 
the number of MCs represented by one pixel [10], [15]. Each MC cluster is modeled using 44 
shape features as listed in Table 1. This feature set consists of 34 features obtained from 
individual MCs in each cluster; and the remaining 10 features describe the region and 
boundary of the entire MC cluster. 
 

C. PSO-SVM Model Selection  

The model selection stage presented in this paper is an algorithm that integrates feature and 
classifier’s model selection processes. This integrated algorithm is more efficient in 
optimizing the performance of the given classification scheme than having to independently 
conduct the two selection processes. This effectiveness becomes obvious when feature 
selection and SVM classifier’s model selection are accomplished using computationally 
expensive search techniques such as GA or exhaustive search [22]. Hence, we developed a 
heuristic based embedded feature selection scheme under a PSO-SVM framework that allows 
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for features search and selection during SVM learning process. In this work, we constructed 
the candidate set to the feature selection task using two methods, namely the nested subset 
and heuristic search methods. In addition, we used a leave-one-out (LOO) training and testing 
method to minimize the risk of data over-fitting and ensure the availability of unseen test 
patterns that have not been previously used in any training or feature selection stages.  
Because the main purpose of the PSO-SVM model selection framework is to optimize 
classification performance and generalization capacity of the SVM classifier, each candidate 
solution for the model selection problem is composed of some parameters assigned into two 
subsets. While the first subset is used to search for the best subset of features, the second 
subset of parameters is intended to select the SVM learning model that leads to the optimal 
generalization ability. The dimensionality of the candidate solution, which is a PSO particle, 
is determined by the feature search method. For the outweighed univariate based nested 
subsets method, each candidate is represented by 5 coordinates, which include two parameters 
for feature search (an index feature subset N and average cross-correlation based penalization 
u) and a set of three parameters for SVM model selection. The SVM model selection 

parameters include the classifier hyper-parameter, kernel function ( FunK ), kernel’s control 

parameter  , and a classifier’s regularization constant C. In addition to the three parameters 

used for the SVM model selection, a binary PSO feature search requires N parameters that are 
converted into a binary string of 44 bits to represent a potential feature subset. We define the 
fitness function as the leave-one-out generalization error of the classifier. 

IV. EXPERIMENTAL RESULTS 

A. Mammogram Datasets 

The proposed four-stage CADx scheme, including shape feature extraction and model 
selection methods, has been tested using two mammogram datasets.  
1) mini-MIAS dataset: This is a screen film mammography dataset provided by the 
Mammographic Image Analysis Society (MIAS) [36]. Each mammogram in the mini-MIAS 
dataset is of 1024 × 1024 pixels with 200µm pixel’s size and 8-bit depth. The dataset contains 
20 mammograms with 25 MC clusters (13 benign and 12 malignant). In addition, each 
mammogram has its ground truth file that specifies the size and coordinates of the centroid of 
the abnormal region (microcalcification cluster). We used this ground truth file as a 
radiologist’s input to extract 128×128 regions centered at each cluster’s centroid. 
2) Bronson Methodist Hospital (BMH) dataset: This dataset consists of 30 digital 
mammograms of 100-µm pixel’s size and 16-bit depth. These digital mammograms contain 
32 MC clusters of which 17 are benign and 15 are malignant cases. We also used the ground 
truth file to determine the size of the region that best fits each MC cluster. 
 

B. Computational Complexity and Experimental Setup  

All segmentation, shape feature extraction, PSO heuristic parameter search, embedded 
features selection, and kernel based SVM classification methods are implemented using 
MATLAB version 7.9.0 (R2009b). Table 2 summarizes the execution times for MC 
segmentation, shape feature extraction, and embedded feature selection using PSO-SVM 
framework. The time for MC segmentation represented the average time required for 
segmenting MCs in each mammographic region. The cross-validation time is the average time 
needed for accomplishing LOO training and testing of each learning model. We mainly 
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focused on investigating the impact of shape feature extraction and feature selection. We did 
not attempt to optimize the computational complexity or speed up the execution time. 
During the search process, the PSO algorithm constructs two sets of parameters. The first set 
of parameters is selected during the initialization stage and kept fixed for the whole search 
process. This set includes the size of the swarm (the number of particles), boundaries of the 
search space, and maximum and minimum velocities for each dimension, and the termination 
criterion, which can be selected as the number of iteration or desired fitness level (the average 
generalization error). The second set of parameters controls the movement of the particles and 

the PSO search process and includes ,,,, 121 rwcc and 2r [24].  

All experimental results presented in this paper are obtained by using PSO heuristic search 
with a swarm of size 100 particles and termination criteria of either maximum iterations of 50 
or a zero generalization error. Additionally, we choose search space limits to be individually 
selected for each coordinate. For example, the classifier’s regularization constant C is a real-
valued number between 1 and 105, while the kernel parameter   is real-valued between 0.5 
and 35 for RBF kernels and an integer P between 1 and 5 for the polynomial kernel. We also 
used the classifier’s generalization error and the ratio of the number of falsely classified test 
patterns to the overall number of test patterns as a primary criterion for model selection and 
feature selection processes. The corresponding area under ROC or Az index was used as a 
secondary performance metric to evaluate the obtained models. 

 
TABLE 2 

MATLAB EXECUTION TIME, IN SECONDS, FOR VARIOUS STAGES OF CADX 

Dataset* MC Segmentation Feature Extraction LOO Cross-Validation 

MIAS 0.07 15.50 0.40 

BMH 0.17 58.87 0.51 
*Datasets are different with respect to the number of cases and region size 

 
C. Results on Mini-MIAS Dataset 

1) Impact of MCs segmentation: In this study, MCs segmentation with reduced false detected 
signals and discriminative shape features has been accomplished by considering several 
design factors. These factors included designing the filtering scheme, utilizing ground truth 
data (location and size of MC cluster provided by MIAS) to improve the segmentation 
process, and employing different shape descriptors to characterize the region and boundary of 
the individual MCs, and the entire cluster and the distribution of MCs in the cluster. As for 
the filtering method, we used a modified top-hat transform that applies additional 
morphological closing (or smoothing) to the background before performing an image 
subtraction. Experimental results, as illustrated in Fig. 4a, indicated that the proposed 
morphological filtering achieved a better classification performance than segmentation using 
a standard top-hat transform. The impact of the selection of the threshold level which is used 
to produce a binary representation of MCs is presented in Fig. 4b. We have tested several 
threshold levels and used classification performance to select a threshold level that led to 
shape features with best discrimination between malignant and benign classes. Aiming to 
eliminate a false calcification outside the actual cluster region, a radiologist’s input is used to 
construct a binary mask from the mammogram annotations and specify the size and centroid 
of the region that best fits each MC cluster. We also found this mask to be useful for 
segmenting the margin of the entire MC cluster. 
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Fig. 4. Impact of the segmentation of the MCs on the classification performance, a) comparison of the performance 
of MC segmentation using the original top-hat and the modified top-hat transforms, b) the impact of different 

threshold’s levels on the performance 
 

2) Results on feature selection: The embedded feature selection, which integrates feature 
selection task with parameter’s adjustment of SVM classifier, used two feature search 
strategies: outweighed univariate based nested subsets method and heuristic search using 
binary PSO technique. These methods are mainly different with respect to the complexity of 
the search process and the size of search space. Embedded feature selection using 
conventional univariate nested subset method (search is guided by a univariate ranking only) 
requires N evaluation of the classification performance, which is more computationally 
efficient than other sequential feature selection (SFS) and heuristic search methods. However, 
the simplicity of the search space using conventional univariate based nested subset technique 
will mostly miss an optimal feature subset and lead to a sub-optimal feature selection process. 
Using cross-correlation based outweighing scheme as an additional criterion can improve 
such a method. Experimental results, presented in Fig. 5, indicate that feature search using 

outweighed univariate-nested subsets method ( 66.0,33.0u and 1.0) generates more 

predictive feature subsets than the univariate ranking-nested subsets method ( 0u ). The 

correlation level becomes more influential, when the feature subset has a small size ( n is less 
than 20). Since no prior knowledge of the best size of feature subset and correlation level is 
available, it was essential to optimize this process as part of the model selection process. 
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Fig. 5. Classification performance of feature subsets constructed using conventional (u=0) and outweighed (u≥ 0) 

nested subsets 
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When using the PSO-SVM with an outweighed nested subsets approach as a feature selection 
method, several learning models (feature subsets, kernel and regularization parameters) have 
achieved the best classification performance. An example of this is presented in Table 3, 
which indicates feature subsets (N=4, 10, 14, and 17) and produces a similar classification 
accuracy of 96% and approximately Az of 0.98. 
Clearly, the binary PSO algorithm is relatively more complex than nested subset methods 
because the former requires N-dimensions of PSO parameter space to accomplish feature 
selection task; only 2 dimensions are needed for the nested subsets method. This relatively 
complex feature search using binary PSO provides a larger search space with a higher 
possibility of finding an optimal feature subset. The results presented in Table 4 demonstrate 
the superiority of feature selection using several learning models and binary PSO method, 
which achieved an optimal classification performance and 100% classification accuracy. We 
found that the higher the classification accuracy was the relatively higher complexity in the 
search method and the size of the best feature subset. The smallest size of the optimal feature 
subset was 9 compared to a subset of size 4 from the nested subset method.  
The results presented in Table 3 and Table 4 indicated that the best classification performance 
was achieved using different learning models. Hence, one may ask which feature subset one 
should select as the final classification model. A very well acceptable answer can be 
formulated using Occam’s razor  principle that suggests the following: a simple solution is a 
correct one. In other words, selecting a solution or model with a lower number of features 
mostly leads to a classifier with better generalization abilities. 

 
TABLE 3 

RESULTS OF THE MODEL SELECTION USING THE OUTWEIGHED UNIVARIATE-BASED NESTED SUBSETS METHOD 

σ C u N Sensitivity/FN Specificity/FP Accuracy Az 

18.3 439 0.18 17 1.0/0 0.92/1 0.96 0.98 

5.5 55 0.71 14 1.0/0 0.92/1 0.96 0.98 

6.9 55 0.88 10 1.0/0 0.92/1 0.96 0.98 

11.3 75 0.84 4 0.91/1 1.0/0 0.96 0.98 

 
TABLE 4 

RESULTS OF THE MODEL SELECTION USING THE BINARY PSO METHOD 

C σ N Members of the feature subset 
10.74 2.62 9 F13F16F23F26F30F31F33F35F37  
378.0 11.85 13 F7 F13F18 F22F25F27F30F31F34F37F38F40F42  
235.0 1.28 14 F9F11F13F15F16F17F18F20F22F31F32F34F38F40 

167.0 8.20 16 F5F10F12F16F18F23F24F25F29F30F31F35F37F40F44 
384.0 9.87 18 F3F9F11F13 F17F18F21F22 F30F31F32 F35F36F37F38F39F40F44 
102.0 6.77 21 F4F7 F8F12F11F13 F17F19F22F25 F29F30F31F32F34F37F39 
315.0 2.88 24 F1F6F8 F9F10F11F14F15 F17F18F19F20F23F24 F26F27F30F31F32 

* Indices Fi’s represent shape features presented in Table 1 
 

Considering various models obtained from outweighed univariate nested subsets method, 
presented in Table 3, we observe that a model with a feature subset of size 4 is a possible 
candidate. However, this subset produced 0 FP and 1 FN results while all other subsets 
produced 1 FP and 1 FN. Since FN result, missing a cancer diagnosis, has relatively a higher 
risk than that of FP, false breast diagnosis, a radiologist should avoid selecting subset 4. 
Following Occam’s razor again, the candidate feature subset of size 10 is expected to be more 
suitable for the final model and for classifying new test patterns. This process of determining 
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best feature subsets was also applied to optimal feature subsets (using binary PSO). The 
results presented in Table 4 allowed for the selection of a feature subset of size 9 for the final 
classification model.  
Even though a model selection using a heuristic principle might provide a general guideline, 
the empirical evidence is still necessary to validate any selection. Hence, in the next 
subsection, we examine the impact of the feature selection process on the robustness of the 
SVM classifier and variations of the regularization and kernel’s parameters.  
3) Results of classifier’s model selection: Although it has been demonstrated that the 
generalization performance of SVM classifier is sensitive to the model selection process, only 
few studies have examined the robustness of their proposed SVM-based classification 
schemes to their parameter values [2] and [37]. In this study, not only did we examine the 
robustness of the SVM classifier to the selection of the kernel function and regularization 
constant but we also investigated how the feature selection process influences performance. 
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Fig. 6. Effect of the selected kernel functions on the classification performance using SVM 

 

For instance, the RBF kernel outperformed polynomial kernel in all experiments of the 
classifier’s hyper-parameter selection. The results obtained using univariate based feature 
selection method indicate a higher classification accuracy of 96 % (0 FN and 1 FP) and Az of 
0.98 from RBF kernel compared to a 92% classification accuracy (1 FN and 1 FP ) and Az of 
0.95 using a polynomial kernel, as shown in Fig. 6. While both kernel functions produced 
perfect classification using binary PSO feature selection, the RBF kernel is more effective 
since it used a feature subset of size 9 compared to 16. 
The classification performance of all learning models (Tables 3 and 4) is a function of both 
RBF kernel’s parameter σ and regularization constant C. Investigating the effect of these 
parameters on the classifier’s performance (i.e. generalization error) indicated the sensitivity 
of the classifier’s performance to the values σ and C. We present our analysis of the models in 
Table 3, which is illustrated in Fig. 7, as follows: 

 The generalization error of SVM descends as the C value deviates from its optimal 
value that is given in Table 4. As shown in Fig. 7a, learning models with feature 
subsets of size 4, 14, and 10 achieved best generalization error using C values of less 
than 60, while a learning model with a subset of size 17 required a C value of about 
400.  

 Using all learning models, results indicate that increasing the value of the 
regularization parameter C increases the generalization error. This may be due to the 
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fact that the SVM classifier tends to over-fit the training data when using larger 
values of the regularization parameter. 

 Results of varying the RBF kernel parameter , as illustrated in Fig. 7b, indicated 
that the performance of the SVM classifier is more sensitive to small values of the 
kernel parameter . This can be justified by observing that a small value of  leads 
to a highly nonlinear decision boundary that produces a poor generalization 
performance. As the  value increases, the generalization ability of most learning 
models becomes more robust. This trend is mostly because large kernel’s width tends 
to improve the linearity of the decision function and attain a better generalization 
performance. The feature selection process also indicated that there is a significant 
effect on the robustness of the SVM classifier to variations of σ and C and on the 
generalization performance. 

 Using feature subsets of size 17, SVM shows superior robustness over a wide range 
of C values. 

 For small values of the parameter C (C< 40), other feature subsets such as the subset 
of size 10 provide better robustness than a subset of size 17.  

 Similarly, a feature subset of size 17 indicates better robustness over most of the 
range of σ. However, for small values of σ, small feature subsets such as a subset of 
size 4 provides a better performance. 

 Using the same procedure, we also examined the learning models presented in Table 
4. Results also pointed to the importance of selecting appropriate values of the 
parameters C and σ. For instance, a learning model with the feature subset of size 9 
produced the best generalization error when the values of the parameters C and σ are 
chosen between 211 to 105, and 3 to 11, respectively. In addition, the learning model 
with a feature subset of size 18 outperformed all other models (excluding a model 
with a subset of size 9) when C values are set between 60 and 500. As for how robust 
is our feature selection especially in response to variations of C and σ, our results 
demonstrate that a feature subset of size 9 produced an average generalization error of 
less than 0.002, consistently provided the best robustness and outperformed all other 
models regardless of the value of the regularization constant C as well the parameters 
σ. 
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a)                                                                            b) 

Fig. 7. Impact of the model selection on the classifier generalization performance with feature subsets 
obtained using the modified nested subset method. Robustness of SVM classifier to variations of the a) 

regularization parameter, and b) the RBF kernel parameter σ. Generalization error in a and b was computed by 
averaging over several values of the parameter σ and C, respectively 
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D. Results on BMH Database  

Using the same feature extraction and model selection methods, we have characterized the 
malignancy of 32 MC clusters from the BMH local database. Testing the proposed CADx and 
feature selection methods using binary PSO, results indicated that a classification 
performance of 100% accuracy can be achieved using a feature subset of 12 features only. 
Results also indicated that the feature selection using an outweighed nested subset scheme 
was less effective since it achieved a maximum classification accuracy of 88%. 
 

E. Discriminative Power of the Shape Features 

Using a single-variable evaluation of shape features based on the ROC analysis technique and 
an outweighed nested subsets method, results highlighted the importance of characterizing the 
shape and distribution of individual MCs as well as the shape of entire MC cluster in the 
discrimination process between malignant and benign MC clusters. For instance, shape 
features describing the region of MCs such as the standard deviation of the region’s extent 

(F13) and region’s compactness ( 23F ) are the most discriminative features. Shape features 

such as the standard deviation of distances between individual MCs and their cluster’s 

centroid ( 27F ), which model the distribution of MCs, produced high-ranking scores. 

Moreover, features such as the standard deviation of the normalized second order moments 

(F29), fourth order moments ( 31F ), and normalized Fourier descriptors ( 34F ), which describe 

the shape boundary of MCs, strongly discriminate between malignant and benign classes. 
Shape features representing the entire MC cluster were also found effective. Examples of 

these features are the cluster area ( 35F ), cluster convex area ( 36F ), length of major axis ( 39F ) 

and minor axis ( 40F ), and normalized Fourier descriptors ( 44F ) of the cluster boundary. 

Considering the members of the best feature subsets obtained from outweighed nested subsets 
and binary PSO methods, one can find a good correlation between results (i.e. selected shape 
features) from both techniques of feature selection. 
 

F. Comparison with other CADx 

Several studies have evaluated their CADx schemes using 40 mammograms form the 
Nijmegen database [10], [11], [38] and [39]. Using multiwavelet features, Zadeh et al. [10] 
achieved the best classification performance of Az of 0.89 which produced a sensitivity of 
0.85 and sensitivity of 0.9. Using the Nijmegen dataset, Verma and Zakos [38] achieved a 
classification accuracy of 88.9% using the neural network and fuzzy-based feature extraction 
model. Using texture features obtained from wavelet transforms and Haralick measures, 
Kramer and Aghdasi [39] produced a classification accuracy of 100%. Using 14 shape 
features and a neural network classifier, Kallergi et al. [4] classified a set of 100 
mammograms from a local database and achieved a classification performance of Az of 0.98 
that corresponds to a sensitivity of 100% and specificity of 85%. Using a neural network 
classifier and 10 Haralick features, Dhwan et al. [13] classified 85 mammograms from a local 
database with an accuracy of 74%. Also, Cordella et al. [40] presented a classification 
performance of Az 0.74 by using multiple expert systems to classify 40 images form DDSM 
dataset. Using 100 MC clusters form DDSM database, Karahaliou et al. [14] analyzed the 
texture of tissue surrounding MCs using different techniques and produced a classification 
accuracy of 89%. 
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The fact that there is no one common dataset used by different CADx approaches makes any 
direct comparison difficult. However, comparing the results of CADx scheme proposed in this 
paper with other CADx algorithms that used MIAS dataset indicated that our scheme 
achieved better classification results than others such as those in [11] and [16]. Papadopoulos 
et al. [11] used SVM and ANN to obtain Az of 0.81 and 0.78. In addition, Wang et al. [15] 
used a mixed texture, shape features and GA for SVM model selection and dimensionality 
reduction of the feature space and achieved Az of 0.86. 

V. CONCLUSIONS 

In this paper, we characterized the malignancy of MC clusters using a morphology-based 
CADx scheme with a heuristic PSO-SVM embedded feature selection method. The necessary 
parameters for the feature selection and kernel-based SVM classification were successfully 
selected using a hybrid PSO algorithm. In this work, we also examined the impact of the 
feature extraction and SVM parameter selection on the classification performance. 
Experimental results demonstrated that several design factors have a significant effect on 
automating the diagnosis of MCs. Thus, we must be cautious in selecting them. Factors may 
include the choice of the segmentation technique, the feature selection method and the level 
of redundancy within selected features, and the elected learning model for kernel-based SVM 
classifier. We, also, would like to emphasize the importance of appropriate feature selection 
methods and their effect on the generalization capability of the SVM classifiers, and their 
robustness to the variations of kernel’s and regularization parameters. 
We also compared the performance of embedded feature selection with the feature search 
using outweighed nested subsets and heuristic binary PSO algorithms. Using MC clusters 
from mini-MIAS and BMH datasets, the feature search using outweighed-nested subsets 
methods achieved classification performance of accuracy 96% and 88%, respectively. On the 
other hand, features selected using a heuristic binary PSO feature search method indicated the 
superior performance of this method and achieved a classification accuracy of 100% for both 
datasets. The inferior performance of feature selection using outweighed nested subsets is 
mostly due to the limitations of its search space. This becomes evident when weak shape 
patterns of MC clusters are present. The results of this study are promising and demonstrate 
the potential of the proposed CADx to improve the PPV for malignancy analysis of MC 
clusters. Our future work will include larger datasets of mammograms from the local hospital 
and public data sources such as DDSM dataset, after we revise the algorithm to address the 
limitations in our current pilot implementation. 
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